Sorry, you need to enable JavaScript to visit this website.

Impact of grid resolution on aerosol predictions: A case study over Italy

TitleImpact of grid resolution on aerosol predictions: A case study over Italy
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication2016
AuthorsMircea, Mihaela, Grigoras G., D'Isidoro Massimo, Righini Gaia, Adani Mario, Briganti Gino, Ciancarella Luisella, Cappelletti Andrea, Calori G., Cionni Irene, Cremona Giuseppe, Finardi S., Larsen B.R., Pace Giandomenico, Perrino C., Piersanti Antonio, Silibello C., Vitali Lina, and Zanini Gabriele
JournalAerosol and Air Quality Research
Volume16
Pagination1253-1267
Date PublishedMAY
ISSN16808584
Keywordsaerosol, Aerosol chemical composition, Aerosols, Air quality, Air quality modeling, Anthropogenic emissions, anthropogenic source, atmospheric modeling, atmospheric pollution, Chemical composition, Forecasting, Horizontal grid, Information use, Italy, Land use, Meteorological condition, Modeling and measurement, Organic carbon, Particles (particulate matter), particulate matter, Po Valley, prediction, Primary organic carbons, Secondary organic carbon
Abstract

This study investigates the effect of grid resolution on the particulate matter (PM10, PM2.5) mass concentrations and its chemical composition simulated with the AMS-MINNI modelling system. The air pollution was simulated over Italy with grid resolutions of 20 and 4 km, for a whole year. The gridded emissions were produced performing speciation and spacetime disaggregation of aggregated inventory data, using both land use information and anthropogenic activity-based profiles. Often, the fine grid simulations, based on high resolution gridded emissions, improved the agreement between model and measurements. In particular, the use of a fine grid improved predictions of primary species such as elemental carbon (EC), PM10 and PM2.5 mainly at urban stations. An improvement of predicted PM components and mass concentration at high altitudes sites was also observed, especially during winter. However, a general overestimation of nitrate (NO3–) and of secondary inorganic species, more evident at night than during the day, was increased by employing a finer grid. Organic carbon (OC) was more affected by the grid resolution than the other species. At urban and kerbside stations, the use of a finer grid resulted in an overestimation of primary organic carbon aerosol (POC) but had a negligible effect on secondary organic carbon aerosol (SOC). The overestimation of carbonaceous aerosol (defined as the sum of EC, POC and SOC), at an urban station, opposite to general underestimation of this component by air quality (AQ) models, indicates that the anthropogenic emissions can contribute as much as organic model formulation at the success of simulation in reproducing experimental data. The modelling results obtained under stable meteorological conditions characterised by weak winds, which are often encountered in the Po Valley, did not improve substantially by the increase of the modelling system resolution. © Taiwan Association for Aerosol Research.

Notes

cited By 0

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84964199968&doi=10.4209%2faaqr.2015.02.0058&partnerID=40&md5=43e47fe61aa1bd786ba6e133710db940
DOI10.4209/aaqr.2015.02.0058
Citation KeyMircea20161253