

AGENZIA NAZIONALE PER LE NUOVE TECNOLOGIE, L'ENERGIA E LO SVILUPPO ECONOMICO SOSTENIBILE

Phytoplankton Dynamics in Subtropical Gyres: New Insights into Biomass and Physiology from 25 years of Satellite Observations

Seminario di Divisione CLIMAR – 29 maggio 2025 ore 10:00

*Geophysical Research Letters; doi: 10.1029/2024GL111817

Chiara Volta

SSPT-CLIMAR-MSC

Co-authors: Marco Bellacicco (CNR-ISMAR, Italy), Xiaogang Xing (SOED-SIO, China), Guo Yang (SOED-SIO, China) & Salvatore Marullo (CNR-ISMAR, Italy).

Background

2

Background

SOUTHERN OC.

PACIFIC

ATLANTIC

Chiara Volta – seminario CLIMAR – 29 maggio 2025 ore 10:00

Sarmiento & Gruber, 2006

Background

From previous satellite studies:

- Subtropical gyres are expanding (increasing oligotrophy decreasing chlorophyll).
- **Desertification alert**: major concerns about its potential impact on the global climate were raised.

Gaps and limitations in previous studies:

- < 10-year analysis or focus on a single gyre (i.e., NASTG, NPSTG).
- Chlorophyll-a is used as a proxy for phytoplankton biomass.
- Photoacclimation physiological adaptation of phytoplankton is not accounted for (i.e., Chlorophyll-a is modulated by adaptation to nutrient, temperature and light conditions, and chlorophyll variations may or may not impact phytoplankton biomass; Behrenfeld et al., 2005).

Scientific questions

- How is desertification progressing in the five subtropical gyres?
 - Are they getting larger and becoming more oligotrophic?
- Does the previously observed chlorophyll decrease imply decreasing phytoplankton biomass?
- Which area is the most affected by desertification?

Methods

Data sets (1998 - 2022)

Variable	Temporal resolution	Spatial resolution	Observation type	Product Name	used to calculate
Chlorophyll-a (Chl)	daily	0.04°	Satellite	ESA-OC-CCI v6.0	area and C_{phy}
Backscattering coeff. at 443 nm (b_{bp})	daily	0.04°	Satellite	ESA-OC-CCI v6.0	C _{phy}
Sea Surface Temperature (SST)	daily	0.05°	Satellite	ESA-SST-CCI v2.1	C _{phy}
Attenuation coeff. at 490 nm (kd(490))	daily	0.04°	Satellite	ESA-OC-CCI v6.0	PARg
Mixed Layer Depth (MLD)	daily	0.25°	Reanalysis	GREP	PARg
Photosynthetically available radiation (PAR _{sat})	daily	0.05°	Satellite	GlobColour Project	PARg

3 spatial scales:

- gyre (chl≤0.1 mg/m³),
- ultra-oligotrophic subregion (chl ≤0.07 mg/m³)
- hyper-oligotrophic subregion (chl ≤0.04 mg/m³)

	NASTG	SASTG	NPSTG	SPSTG	IOSTG	Global scale
25-year av	verages					
A _{0.1}	11.0	10.6	30.2	29.2	13.0	94.0
(km ⁶)	(3.1%)	(2.9%)	(8.4%)	(8.1%)	(3.6%)	(26.1%)
A _{0.07}	7.3	7.1	21.9	18.5	6.7	61.5
(km ⁶)	(2.0%)	(2.0%)	(6.0%)	(5.1%)	(1.8%)	(16.9%)
A _{0.04}	2.3	1.5	1.0	8.5	1.1	14.4
(km ⁶)	(0.6%)	(0.4%)	(0.3%)	(2.3%)	(0.3%)	(3.9%)
Chl _{0.1} (mg/m ³)	0.061	0.061	0.062	0.059	0.068	-

ENER Chiara Volta – seminario CLIMAR – 29 maggio 2025 ore 10:00

7

	NASTG	SASTG	NPSTG	SPSTG	IOSTG	Global scale
Linear va	riation rate	s (% yr¹)				
A _{0.1}	+0.07	+0.09	+0.27	-0.26	+0.37	+0.07
A _{0.07}	+0.33	-0.03	+0.87	-0.22	+0.67	+0.32
A _{0.04}	+3.83	+0.63	+44.51	+0.23	+4.65	+1.54
Chl _{0.1}	-0.27	+0.05	-0.35	-0.08	-0.12	-0.16
Chl _{0.07}	-0.32	+0.02	-0.30	-0.18	-0.11	-0.18
Chl _{0.04}	-0.53	-0.14	-0.15	-0.06	-0.13	-0.21
SST _{0.1}	+0.09	+0.03	+0.07	+0.21	+0.20	+0.12
SST _{0.07}	+0.07	+0.08	-0.006	+0.24	+0.21	+0.11
SST _{0.04}	+0.08	+0.15	+0.05	+0.07	+0.28	+0.12

Chiara Volta – seminario CLIMAR – 29 maggio 2025 ore 10:00

8

Phytoplankton biomass calculation*

*Yang et al., 2024

$$ChI = \underbrace{13000 (b_{bp} - b_{bNAP}) [\theta_{min} + (\theta_{max} - \theta_{min}) \exp^{-3PARg}}_{Biomass (C_{phy})}$$
Photoacclimation

→ Two unknowns (b_{bNAP} and θ_{min}), derived using non-linear least-squares regression.

$$\begin{split} b_{bp} &= \text{particulate backscattering coefficient} \\ b_{bNAP} &= \text{non-algal particle fraction} \\ \theta_{min} &= \text{term accounting for nutrient limitation under} \\ \text{saturated light conditions on ChI and } C_{phy} \\ \theta_{max} &= \text{term accounting for temperature effect on ChI and} \\ C_{phy} \\ \text{PARg} &= \text{median PAR value in the mixed layer} \end{split}$$

	NASTG	SASTG	NPSTG	SPSTG	IOSTG	Global scale
Linear variation rates (% yr ⁻¹)						
Chl _{0.04}	-0.53	-0.14	-0.15	-0.06	-0.13	-0.21
C _{phy0.04}	+0.07	-0.06	+0.04	-0.17	+0.12	+0.01
θ _{0.04} (Chl/C _{phy)}	-0.70	-0.08	-0.23	-0.09	-0.25	-0.23
SST _{0.04}	+0.08	+0.15	+0.05	+0.07	+0.28	+0.12
MLD _{0.04}	+0.11	+0.05	-0.26	-0.17	-0.37	-0.13
PARg _{0.04}	+0.002	+0.08	-0.002	+0.06	+0.03	+0.03
						n<0 05

Chiara Volta – seminario CLIMAR – 29 maggio 2025 ore 10:00

Data correlation coefficients	Chl _{0.04} vs. SST _{0.04}	Chl _{0.04} vs. MLD _{0.04}	Chl _{0.04} vs. PARg _{0.04}
NASTG	-0.36	-0.15	0.17
SASTG	0.13	0.07	-0.23
NPSTG	-0.27	0.15	0.02
SPSTG	0.24	-0.11	0.46
IOSTG	-0.26	-0.38	0.13

Data correlation coefficients	C _{phy0.04} vs. SST _{0.04}	$C_{phy0.04}$ vs. $MLD_{0.04}$	C _{phy0.04} vs. PARg _{0.04}
NASTG	0.51	-0.50	0.60
SASTG	-0.51	-0.17	-0.41
NPSTG	0.32	0.16	0.44
SPSTG	-0.79	0.26	-0.81
IOSTG	0.75	-0.07	0.16

Main conclusions

Q: Are the subtropical gyres getting larger and more oligotrophic?

A: Yes. The subtropical gyres are expanding and becoming more oligotrophic and warmer over time at the global scale.

Q: Does the chlorophyll decrease imply decreasing phytoplankton biomass?

A: No. The phytoplankton biomass is rather stable over time, suggesting that the physiological adaptation of the phytoplankton community to changing growing conditions may drive observed chlorophyll anomalies and trends.

Q: Which area is the most affected by desertification?

A: The most impacted area is the hyper-oligotrophic core of the NPSTG.

Emerging questions

- How does ocean warming alter the vertical distribution of phytoplankton chlorophyll and biomass?
- How do potential changes in the Deep Chlorophyll Maximum (DCM) and Deep Biomass Maximum (DBM) affect phytoplankton productivity?
- How do these changes impact the transfer efficiency of exported carbon to deeper ocean layers?

Grazie per l'attenzione

chiara.volta@enea.it

ENEL