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Satellite Data: Europe and U.S.A
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“The U.S. National Oceanic and Atmospheric Administration 

(NOAA) has a long history of satellite observations, including for 

atmospheric composition. Stratospheric ozone measurements have 

been made by NOAA since the 1980s, and over the years, NOAA’s

weather satellites have added other atmospheric composition 

capabilities, particularly volcanic ash, dust, smoke aerosols, and 

limited tropospheric trace gas measurements

(e.g., Zhang et al. 2022; Nalli et al. 2020; Shephard et al. 2020; 

Wells et al. 2022; Li et al. 2015). These products already support a 

number of applications, especially timely information about aerosols 

and wildfire smoke observations provided through AerosolWatch. 

Expanding its spaceborne atmospheric composition focus, NOAA 

has made plans for a dedicated ultraviolet–visible (UV–Vis) 

instrument aboard its next-generation geostationary constellation, 

GeoXO, expected to launch in the 2030s. As NOAA begins 

planning for the next generation of low-Earth-orbit (LEO) satellites, 

it is users’ input on the needs for LEO satellite data in the 2040s and 

beyond, when NOAA’s current operational Joint Polar Satellite 

System (JPSS) series of satellites will reach end of life.”

(https://doi.org/10.1175/BAMS-D-22-0266.1)
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Sentinel-5P: TROPOMI

• Sentinel-5 Precursor

• Low Earth Orbit Atmospheric Chemistry Mission

• Launched -13 October 2017 by ESA

• The TROPOMI instrument is UV-VIS-NIR-SWIR push-broom 

grating spectrometer.c, it is based on the DOAS technique, the 

most widely used method to derive atmospheric trace gas 

constituents in the UV–visible spectral range.

• The S5p sensor TROPOMI samples the Earth’s surface with a 

revisit time of one day and with aspatial resolution of 7.0x3.5 

km2 , respectively 5.5×3.5km2 (since 6th of  August 2019)

.

(https://sentiwiki.copernicus.eu)

The Copernicus Sentinel-5 Precursor mission reduces gaps 

in the availability of global atmospheric data products 

between SCIAMACHY/Envisat (which ended in April 2012), 

the OMI/AURA mission and the future Copernicus Sentinel-4 

and Sentinel-5 missions.

TROPOMI is a key data contributor

for Copernicus Atmosphere

Monitoring Service (CAMS) and

Copernicus Climate Change Service

(C3S)



Sentinel-5P products

(https://sentiwiki.copernicus.eu)



CAMEO (CAMs EvOlution) 

www.cameo-project.eu
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CAMEO – WP3 Enhancement of Satellite Data Assimilation in regional CAMS models

T3.1 Assimilation of Sentinel 5p TROPOMI products (INERIS, FMI, AU, ENEA, FZJ, SMHI, IOS-PIB)
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• Task 3.1.1: Assimilation of TROPOMI SO2 in CAMS2_40 Regional Models. All seven

teams contributing to Task 1 will assess the added value of assimilating SO2. The

assessment will include a sensitivity to the choice of the selected retrieval. The

development will be strongly dependent on the individual assimilation techniques

in the 7 models participating in Task 1. The coordination will focus on designing

consistent numerical plans in the selection of retrieval products and evaluation

procedure to demonstrate the added value for the air quality system as a whole.

• Task 3.1.2: Assimilation of TROPOMI CO, O3, HCHO in CAMS2_40 Regional Models.

Selected teams will assess the feasibility and added value of assimilating additional

gaseous species.



Data Assimilation

-assimilation of measurements at stations-
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Data assimilation refers to a

large group of methods that

update information from

numerical computer models with

information from observations.

Data assimilation is used to

update model states, model

trajectories over time, model

parameters, and combinations

thereof.

(Wikipedia)



Data Assimilation

-measurements at stations and satellite data-

9

(Adani and Uboldi, 2023)
S5P SO2 COBRA



CSO - CAMS Satellite Operator
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Tools for assimilation of satellite data in regional air quality model.

Aarjo Segers (https://ci.tno.nl/gitlab/cams/cso)

Observation operator SO2-COBRA (T3.1.1 CAMEO)
A model simulated column is :  

𝑦𝑠 (𝑥𝑚) = 

𝑙

𝐴𝑙 𝐻𝑥𝑚,𝑙

• 𝑥𝑚 is the local model apriori profile
• A is the averaging kernel defined on the a priori layers
• H is the horizontal and vertical mapping operator from

model grid to layers to a priori layers

• Possible benefit of using Air Mass Factor (AMF) as reported in
the PUM and Duros et al 2023 (https://doi.org/10.5194/gmd-
16-509-2023)

• AMF : ratio between optical thickness of vertical and slant
vertical column. By default, AMF are provided with TM5
apriori profile and the user.

Alternative AMF is defined by:

𝑀𝑚
∗ (𝑥𝑚) = 𝑀(𝑥𝑎 ) σ𝑙 𝐴𝑙 𝐻𝑥𝑚,𝑙 /

σ𝑙 𝐻𝑥𝑚,𝑙

• 𝑥𝑎 is the apriori TM5 profile
• 𝑥𝑚 is the local model apriori profile

• 𝑀(𝑥𝑎 ) is the TM5 airmass factor
• A is the averaging kernel defined on the a

priori layers
• H is the horizontal and vertical mapping

operator from model grid to layers to a priori
layers

Courtesy of Gaël Descombes (INERIS) 



Error Covariances in Data Assimilation
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Error covariance matrix describes the spread and correlation of errors in a given dataset.

Background Error Covariance=the uncertainty in the model forecast (background state) before assimilating new 
observations (Used in 3D-Var, 4D-Var, Kalman Filters, and EnKF)
Observation Error Covariance=uncertainty in the observations (e.g., satellite,)
Analysis Error Covariance=uncertainty in the analysis (final estimate after assimilation).
Model Error Covariance=uncertainties in the model dynamics (used in Kalman Filters to update state estimates)



Data Assimilation:
: Optimal Interpolation (OI) and Ensemble Adjustment Kalman Filter (EnAKF)
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OI: the background error covariance

matrix is stationary

EnAKF: the background error covariance

evolves with the model dynamics

❑It is a static, variance-minimizing method that 

updates the state estimate using a weighted average 

of observations and model forecasts.

❑The weights are determined based on a predefined 

covariance matrix, which does not evolve 

dynamically.

❑OI assumes stationary error statistics, meaning it 

does not adapt to time-varying uncertainties in the 

system.

Computationally efficient since it uses a 

precomputed covariance matrix.

Often used in operational weather forecasting 

where computational efficiency is key.

❑It is an ensemble-based, sequential assimilation 

method that updates model states using a 

dynamically evolving estimate of error covariances.

❑Unlike OI, it does not require an explicit model for 

error covariances; instead, it estimates them from 

the ensemble of model states.

❑EAKF accounts for nonlinear and time-dependent 

error growth, making it more suitable for highly 

dynamic systems.

More computationally expensive because it requires 

running and updating an ensemble of forecasts.

Widely used in modern atmospheric and ocean data 

assimilation systems (e.g., for climate reanalysis and 

numerical weather prediction) due to its ability to 

handle complex error structures.
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MINNI simulation setup over Europe: August 2023

resolution 0.15 x 0.1 lat/lon

number grid points 468x421

number of vertical levels 17

top of domain 11790m

meteorological driver 12 UTC IFS, 1 hrly

boundary conditions CAMS global

Emission inventory EmissionInventories6.1.1_year2022(operational 
end of 2024)
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OI setup

Optimal Interpolation

Background Error Covariance Matrix (B) computed with NMC (Parrish and Derber, 1992)  for 
48h-0h forecast (D0 and D-2) using log concentration

B annual (average of monthly B), static

Negative values are not considered

Satellite data assimilated only if they are two times higher than their St.Dev

Observational Error Covariance Matrix (R) extracted from satellite data

B and R are diagonal: variance and correlation scales are handled separately
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SO2 COBRA dataset 

assimilation with OI
:
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SO2 COBRA dataset assimilation with OI
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NO2 dataset assimilation with OI
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DART implementation in MINNI
Ensemble Adjustment Kalman Filter (EnAKF)

Sentinel 5P processed with 

Copernicus Satellite Operator 

CSO

SO2, HCHO, CO, O3

Perturbation FARM field consisting of 

varying emissions and BCs

EnAKF with Quantile 

Conserving Ensemble 

Filter Framework 

(QCEFF)

FARM-DART

FARM-DART

ORCHESTRATOR
FARM

DART

ARIANET team: Alessandro D’Ausilio, 

Giorgia De Moliner and Camillo Silibello

EAKF

https://dart.ucar.edu/

https://github.com/alessandroda/DART/tree/alessandroda-main


Emissions’ perturbation for EAKF

𝐴𝑖,𝑗,𝑘,𝑙=

1,
0,

𝑣𝑐𝑜𝑣
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𝑷𝒆𝒓𝒕𝒇𝒊𝒏𝒂𝒍 𝒕 = 𝜶𝑷𝒆𝒓𝒕𝒇𝒊𝒏𝒂𝒍 𝒕 − 𝟏 + 𝟏 − 𝜶𝟐𝑷𝒆𝒓𝒕𝒇𝒊𝒏𝒂𝒍 𝒕

𝑃𝑒𝑟𝑡𝑓𝑖𝑛𝑎𝑙 =
𝐹𝑖𝑒𝑙𝑑 −  𝜇

𝜎
𝑠𝑝𝑟𝑒𝑎𝑑

𝑃𝑒𝑟𝑡𝑖,𝑗,𝑘 = 𝑍𝑖,𝑗,𝑘𝑤𝑖,𝑗,𝑘𝐴𝑖,𝑗,𝑘,𝑙

𝑍𝑖,𝑗,𝑘 = 𝐵𝑖,𝐽,𝑘 −2 ln 𝑈1 cos 2𝜋𝑈2

𝑤(𝑖,𝑗,𝑘) = 𝑒𝑥𝑝(−(𝑑𝑖𝑗
2 )/(𝐿ℎ𝑧

2 ))

Horizontal correlationVertical correlation

Box-Muller random field

Applying horizontal and vertical corr.

Recentering and rescaling

(Boynard et al.,2011)

𝛼 = 𝑒𝑥𝑝 −
1

𝜏
Time decorrelation 
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SO2 COBRA dataset assimilation with DART- EnAKF

Averaged difference between Posterior and Prior ensemble means
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SO2 COBRA dataset assimilation with DART- EnAKF

Time-series of mean concentration averaged over the domain. Gray: retrieval. 

Blue: prior ensemble mean. Red: posterior ensemble mean. Left: a priori 

using the tm5 model. Right a priori using the MINNI model
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Summary and future plans

-SO2 satellite data assimilation with OI makes “visible” Etna plume more than EAKF-DART with 

current setup

-HCHO, CO and O3 satellite data will be assimilated with OI and at least one pollutant with EAKF-

DART

-study the sensitivity of OI results to background error covariance matrix specification

-study the sensitivity of SO2 results with EAKF-DART to perturbation parameters

-study if DART performances improves when SO2 Etna emissions will be included
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EGU 2025
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EGU 2025
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