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Satellite Data: Europe and U.S.A

In May of 1998, a vision for a European environment oring programme was agreed upon in Baveno, Italy. Ever since, thi
has grown beyond expectations, giving nise to Copemicus, the mc bitious and successful Earth Observation programme in the world.

The eight Copernicus Sentinel satellites in orbit, complemented by contributing missions, in situ sensors
and numerical models, deliver and daily to hundreds of tho sands of users. cus also
supports tens of thousands of jobs and generates billions of Euros in economic benefits.

On 19 May, a group of experts signs the Baveno Manifesto, a document proposing the
u&'ﬁlmufaEuom‘lammavlnm programme. It is a call for Europe to play
handling woridwide environmental and climale issues. —_—
The programme is iniially iniroduced as “Global Monitoring for Environmental
Security - GMES”, but it evolves to serve the security of both the environment and the
- people of Europe, adopiing “Global Monitoring for Environment and Security” as a

A space-based observation component is proposed. The European
Commission (EC) signs an agreement with the European Space Agency
(ESA), setfing the stage for a GMES Space Component the Senfinel
family of satellites.

S is renamed Copernicus, paying homage to the European astronomer
revolutionised our understanding of the Earth's dynamics. The Land
Monitoring and Emergency Management Services start operafing.
The EU adopts a Reguiation infroduci
>-— programme: the full, free and open data policy.
deployment of the Copemicus Space Component begins with the
el-1A radar satellite while the Copemicus Regulation is adopied by

3A is launched on 16 February. It is a “workhorse mission” for
Service are launched. Copemicus, camying muifiple ocean and land
monitoring instruments. On 25 April,
cﬂ'npbmg the first Copemicus Sentinel consteliafion
becomes operafional.

. Sentinet5P, “Tor the air we breathe”, is dedicated to giobal Arr
y monitoring.

Senfinel-3B Is Ia.nrme:i on 25 April, enabling the provision of multispectral
global coverage with a two-day revisit. The Copemicus Climale Chang

sixth of the services, is operational at the end of the year. 21-6 Michael Freilich is launched on 21 November 2020 o enable the provision

of hlgh—preasm and timely observations of the fopography of the global ocean.

_

kalng ahead, Copemicus will have millions of users with access to all of its data through the Data and Information Access Services. it wil
‘continue supporting scientists, the EU, national, regional and local government users, indusiry, emergency managers, NGOs and citizens in the development of
new space-hased applications, products, services and dimate change monitoring.

“The U.S. National Oceanic and Atmospheric Administration
(NOAA) has a long history of satellite observations, including for
atmospheric composition. Stratospheric ozone measurements have
been made by NOAA since the 1980s, and over the years, NOAA’s
weather satellites have added other atmospheric composition
capabilities, particularly volcanic ash, dust, smoke aerosols, and
limited tropospheric trace gas measurements

(e.g., Zhang et al. 2022; Nalli et al. 2020; Shephard et al. 2020;
Wells et al. 2022; Li et al. 2015). These products already support a
number of applications, especially timely information about aerosols
and wildfire smoke observations provided through AerosolWatch.
Expanding its spaceborne atmospheric composition focus, NOAA
has made plans for a dedicated ultraviolet—visible (UV—Vis)
instrument aboard its next-generation geostationary constellation,
GeoXO, expected to launch in the 2030s. As NOAA begins
planning for the next generation of low-Earth-orbit (LEO) satellites,
it is users’ input on the needs for LEO satellite data in the 2040s and
beyond, when NOAA’s current operational Joint Polar Satellite
System (JPSS) series of satellites will reach end of life.”
(https://doi.org/10.1175/BAMS-D-22-0266.1)
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Sentinel-5 will also be dedicated to

COPERNICUS LAND MONITORING
SERVICE (CLMS)

The Copemicus Land Monitoring
Service provides access to up-fo-date
information on land use and cover
| products and on related variables.
-

[ SENTINEL-SP .
oy
Sentinel-5 Precursor is a gap-filler SENTINEL-6 | |

mission aiming to provide Air Quality data
continuity until the launch of Sentinel-5.

Sentinel-6 provides high
accuracy alfimetry for The Security Service aims to support EU policies by providing
measuring global sea information in response to Europe's secunty challenges.
surface height, primarily for
seaevel rise monitoring,

oceanography

operational
and cimate studies.




Sentinel-5P: TROPOMI

The Copernicus Sentinel-5 Precursor mission reduces gaps
in the availability of global atmospheric data products
between SCIAMACHY/Envisat (which ended in April 2012),
the OMI/AURA mission and the future Copernicus Sentinel-4
and Sentinel-5 missions.

» Sentinel-5 Precursor

» Low Earth Orbit Atmospheric Chemistry Mission

* Launched -13 October 2017 by ESA

* The TROPOMI instrument is UV-VIS-NIR-SWIR push-broom
grating spectrometer.c, it is based on the DOAS technique, the
most widely used method to derive atmospheric trace gas
constituents in the UV-visible spectral range.

Image Credit/Copyright: ESA/ATG medialab

* The S5p sensor TROPOMI samples the Earth’s surface with a
revisit time of one day and with aspatial resolution of 7.0x3.5
km2 , respectively 5.5x3.5km2 (since 6th of August 2019)

TROPOMI is a key data contributor

(https://sentiwiki.copernicus.eu)

for Copernicus Atmosphere

Monitoring Service (CAMS) and swath | ground

Copernicus Climate Change Service nstrument | satelite | width | pexel size

(C3S) GOME-1 ERS-2 960 km | 320 x 40 km
SCIAMACHY | ENVISAT 960 km | 60 x 40 km
OMI EOS-AURA | 2600 km 12x 24 km

M GOME-2 MetOp-A 1920 km | 30 x 40 km




Sentinel-5P products

Air Quality &
Pollution
Climate Change 4 4 L4 "4 "4 L4 4 4
Aviation Safety « L4 4
Ozone and Ozone 4 14 14

Layer Control

Support to other 4
S5P Products

M (https://sentiwiki.copernicus.eu)



CAMEO (CAMs EvOlution)
www.cameo-project.eu

WP7: Project management,

coordination and oversight
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CAMEO - WP3 Enhancement of Satellite Data Assimilation in regional CAMS models

T3.1 Assimilation of Sentinel 5p TROPOMI products (INERIS, FMI, AU, ENEA, FZJ, SMHI, 10S-PIB)

e Task 3.1.1: Assimilation of TROPOMI SO2 in CAMS2_40 Regional Models. All seven
teams contributing to Task 1 will assess the added value of assimilating SO2. The
assessment will include a sensitivity to the choice of the selected retrieval. The
development will be strongly dependent on the individual assimilation techniques
in the 7 models participating in Task 1. The coordination will focus on designing
consistent numerical plans in the selection of retrieval products and evaluation
procedure to demonstrate the added value for the air quality system as a whole.

e Task 3.1.2: Assimilation of TROPOMI CO, O3, HCHO in CAMS2_40 Regional Models.
Selected teams will assess the feasibility and added value of assimilating additional
gaseous species.

ENEN 7



Data Assimilation

-assimilation of measurements at stations-

Data assimilation refe rs to a Atmospheric Environment 306 (2023) 119806
|arge group of methods that Contents lists available at ScienceDirect EE‘R”P-»%T"&E&E
update information from _ Atmospheric Environment
numerical computer models with o1 SEVIER ) ST s i rr T
information from observations.
Data assimilation is used to Data assimilation experiments over Europe with the Chemical Transport |
update model states, model i"_deif‘e‘_‘_‘f“}? —
rio Adam *+, Francesco 0. +Cs
trajectories over time, model L By 1y
. . ¢ Current affifiation: CIMA Foundation, Savona, fraly

parameters, and combinations

HIGHLIGHTS
thereof.

- An assimilation scheme based on 3Dvar/0.1. is implemented on CTM FARM model.

* Results are consistent with CAMS ensemble reanalysis.
(Wiki pedia) iﬂi:::ﬁn:ls:;ngnii: ;?a:;nﬁzﬁms?:raﬁzsknpmes model estimates. I
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Fig. 4. Median of the monthly bias computed on station for validation Blue line is the VRA ensemble, red is MINNI with BF and SCT, magenta MINNI with only BF, vellow is
the “free run”. Shaded area is the spread of CAMS members,



Data Assimilation

-measurements at stations and satellite data-
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CSO - CAMS Satellite Operator

Tools for assimilation of satellite data in regional air quality model.

Aarjo Segers (https://ci.tno.nl/gitlab/cams/cso)

A model simulated columnis :
Vs (Xm) = 2 Al me,l
l

® X, isthelocal model apriori profile

e Aisthe averaging kernel defined on the a priori layers

e His the horizontal and vertical mapping operator from
model grid to layers to a priori layers

e  Possible benefit of using Air Mass Factor (AMF) as reported in
the PUM and Duros et al 2023 (https://doi.org/10.5194/gmd-
16-509-2023)

e AMF : ratio between optical thickness of vertical and slant

vertical column. By default, AMF are provided with TM5
apriori profile and the user.

ENEN

Alternative AMF is defined by:
Mz, (xm) = M(x, )Zl A me,l/
2 Hxp

e X, isthe apriori TMS5 profile

® X, isthelocal model apriori profile

o M(x, )isthe TM5 airmass factor

e A is the averaging kernel defined on the a

priori layers

e H is the horizontal and vertical mapping

operator from model grid to layers to a priori
layers
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Error Covariances in Data Assimilation

Error covariance matrix describes the spread and correlation of errors in a given dataset.

General Form of an Error Covariance Matrix

A covariance matrix P is given by:

P =El(z - &)(x - 7)"]

where:
s 1 is the estimated state vector (e.g., temperature, pressure at different locations).
® T is the mean of the state vector.

» [E[-] denotes the expectation (statistical mean).

Each element of P represents how errors in different variables are related:

2
a1 dg12 013

2
da1  O5 O3
P = 2
TJ31 OT32 O3

where:

. Jf (diagonal elements) = variance of errors for state variable ¢ (uncertainty in individual values).

* 0;y; (off-diagonal elements) = covariance of errors between state variables ¢ and j (how errors in

one variable influence another).

Background Error Covariance=the uncertainty in the model forecast (background state) before assimilating new
observations (Used in 3D-Var, 4D-Var, Kalman Filters, and EnKF)

Observation Error Covariance=uncertainty in the observations (e.g., satellite,)

Analysis Error Covariance=uncertainty in the analysis (final estimate after assimilation).

Model Error Covariance=uncertainties in the model dynamics (used in Kalman Filters to update state estimates)

ENEN ﬂ



Data Assimilation:

: Optimal Interpolation (Ol) and Ensemble Adjustment Kalman Filter (EnAKF)

Ol: the background error covariance
matrix is stationary

alt is a static, variance-minimizing method that
updates the state estimate using a weighted average
of observations and model forecasts.

OThe weights are determined based on a predefined
covariance matrix, which does not evolve
dynamically.

QO0l assumes stationary error statistics, meaning it
does not adapt to time-varying uncertainties in the
system.

Computationally efficient since it uses a
precomputed covariance matrix.

Often used in operational weather forecasting
where computational efficiency is key.

ENEN

EnAKF: the background error covariance
evolves with the model dynamics

Qlt is an ensemble-based, sequential assimilation
method that updates model states using a
dynamically evolving estimate of error covariances.

QUnlike Ol, it does not require an explicit model for
error covariances; instead, it estimates them from
the ensemble of model states.

OEAKF accounts for nonlinear and time-dependent
error growth, making it more suitable for highly
dynamic systems.

More computationally expensive because it requires
running and updating an ensemble of forecasts.

Widely used in modern atmospheric and ocean data
assimilation systems (e.g., for climate reanalysis and
numerical weather prediction) due to its ability to
handle complex error structures.

12



MINNI simulation setup over Europe: August 2023

resolution 0.15 x 0.1 lat/lon

number grid points 468x421

number of vertical levels 17

top of domain 11790m

meteorological driver 12 UTCIFS, 1 hrly

boundary conditions CAMS global

Emission inventory Emissioninventories6.1.1_year2022(operational

end of 2024)

ENEA e



he most basic mathematical formulation of Optimal Interpolation (Ol) for satellite data assimilation is

jiven by the analysis equation: Kalman Gain in Ol

vhere:

e = o’ + ff(y - H:Eb} The Kalman gain matrix in Ol is computed as:
K = BH'(HBH" + R)™!

. . . ... where:
" = analysis state {updated estimate of the atmosphere after assimilatio

b . . + B = background error covariance matrix (describes uncertainty in the background state).
x” = background state (forecast or prior estimate).

s R = observation error covariance matrix (describes uncertainty in satellite observations).

y = observation (e.g., satellite temperature retrieval). T , ) , .
s H* = transpose of the observation operator, which transforms observation space back into model

H = observation operator, which converts the model state to observatio space.

K = Kalman gain matrix, which determines how much weight is given to observations versus the

background.

Y — Hz" = observation innovation, which represents the difference between the observed and

predicted values. : X
Optimal Interpolation

Background Error Covariance Matrix (B) computed with NMC (Parrish and Derber, 1992) for
48h-0h forecast (DO and D-2) using log concentration

B annual (average of monthly B), static

Negative values are not considered

Satellite data assimilated only if they are two times higher than their St.Dev
M Observational Error Covariance Matrix (R) extracted from satellite data

B and R are diagonal: variance and correlation scales are handled separately
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S02 COBRA dataset assimilation with Ol

Timeseries S5P SO2 retrieval (2023080110 _2023083114)
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NO, dataset assimilation with OI

Timeseries S5P NO2 retrieval (2023080110_2023083114)
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DART implementation in MINNI

Ensemble Adjustment Kalman Filter (EnAKF)

For each member

Q) NCARIDART

Ensemble analysis (x,)

EnAKF with Quantile

Xq=Xxp+ K[y° - H(xf)]
. Ensemble background (x¢)
(o ' )
IO FARM Member 1
_______________________________ N\ e EE— v vencor 1 S -
\ e ey | e DART filter -
2 e — [ | EE] |
= | \ =nl DART to FARM FARM Member 3
- Model esti
"7 7777777777777777 7
e I - R ——— |

observations

Conserving Ensemble

(H(xf)) Filter Framework
(QCEFF)
Perturbation FARM field consisting of
varying emissions and BCs
e ORCHESTRATOR DART
FARM
@ Sat Observation in DART

Input.nml ( : : ’ format
- controls behavior FARM-DART
DART executables

OF
https://dart.ucar.edu/
Sentinel 5P processed with
Copernicus Satellite Operator
CSO
S0O2, HCHO, CO, 03
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https://github.com/alessandroda/DART/tree/alessandroda-main

Emissions’ perturbation for EAKF
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S0O2 COBRA dataset assimilation with DART- EnAKF
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S02 COBRA dataset assimilation with DART- EnAKF
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Summary and future plans

-S0O2 satellite data assimilation with Ol makes “visible” Etna plume more than EAKF-DART with
current setup

-HCHO, CO and O3 satellite data will be assimilated with Ol and at least one pollutant with EAKF-
DART

-study the sensitivity of Ol results to background error covariance matrix specification
-study the sensitivity of SO2 results with EAKF-DART to perturbation parameters

-study if DART performances improves when SO2 Etnha emissions will be included

ENEN :
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