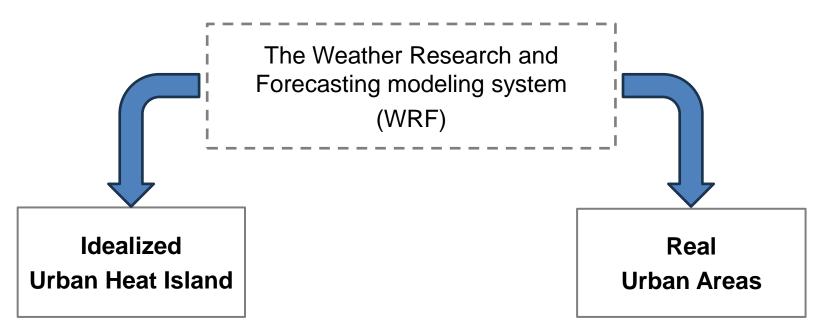


Simulazioni ad alta risoluzione dell'ambiente urbano mediante WRF

Seminario di Divisione CLIMAR – 8 maggio 2025 ore 10:00

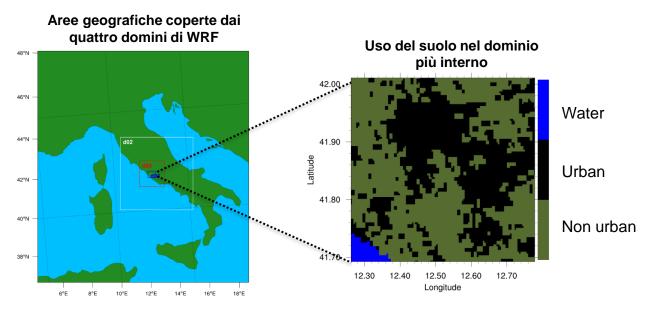
Serena Falasca


SSPT-CLIMAR-MSC

Sommario

- ✓ Introduzione
- ✓ Caratterizzazione delle aree urbane in WRF
- ✓ Recenti progressi nella rappresentazione delle aree urbane in WRF
- ✓ Impianto metodologico per le seguenti applicazioni
 - ✓ Qualità dell'aria
 - ✓ Consumi energetici degli edifici
 - ✓ Tecniche di mitigazione dell'isola urbana di calore (UHI)

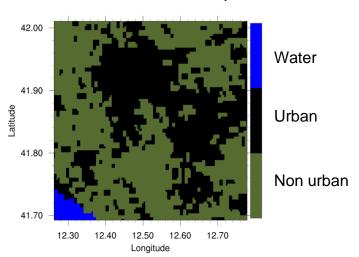
Simulazioni WRF idealizzate e realistiche


WRF-Ideal Risoluzione orizzontale = 50 m

Risoluzione orizzontale = 1 km e meno

Modellazione delle aree urbane in WRF – esempio di Roma

✓ Differenziazione nell'uso del suolo tra celle urbane e non urbane



Modellazione delle aree urbane in WRF

- ✓ Differenziazione nell'uso del suolo tra celle urbane e non urbane
- ✓ Per le celle urbane: possibilità di specificare parametri urbani per la città oggetto di studio

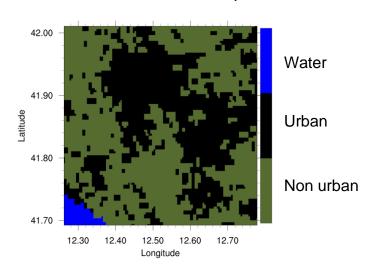
Modellazione delle aree urbane in WRF - esempio di Roma

Uso del suolo nel dominio più interno

Parametri urbani – da modificare ad opera dell'utente

Esempi:

- · Building height [m]
- Building width [m]
- · Road width [m]
- Urban Fraction [Fraction]
- Heat capacity of roof/wall/road [Jm⁻³K⁻¹]
- Surface albedo of roof/wall/road



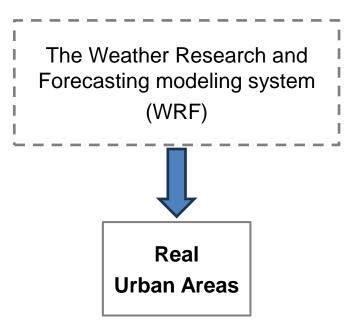
Modellazione delle aree urbane in WRF

- ✓ Differenziazione tra celle urbane e non urbane
- ✓ Per le celle urbane: possibilità di specificare parametri urbani per la città oggetto di studio
- ✓ Per le celle urbane: possibilità di attivare uno schema di parametrizzazione urbana - tre schemi di parametrizzazione urbana con diversi gradi di complessità

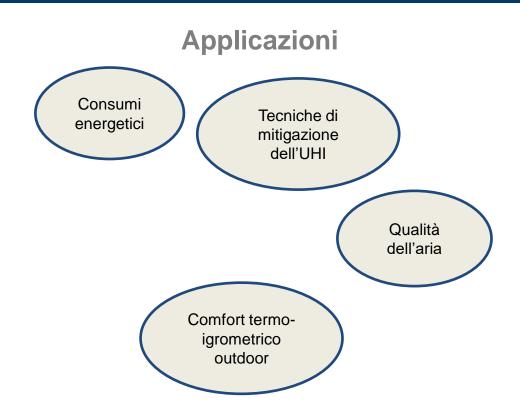
Modellazione delle aree urbane in WRF - esempio di Roma

Uso del suolo nel dominio più interno

Parametri urbani – da modificare ad opera dell'utente


Esempi:

- Building height [m]
- Building width [m]
- · Road width [m]
- Urban Fraction [Fraction]
- Heat capacity of roof/wall/road [Jm⁻³K⁻¹]
- Surface albedo of roof/wall/road

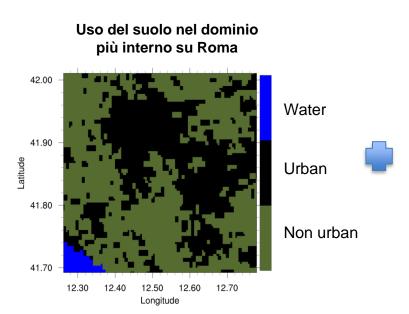


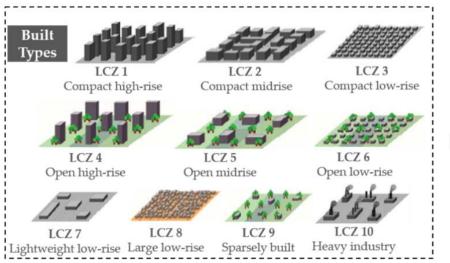
Schemi urbani

Simulazioni WRF realistiche

Risoluzione orizzontale = 1 km e meno Risoluzione temporale = 1 h

Simulazioni WRF realistiche

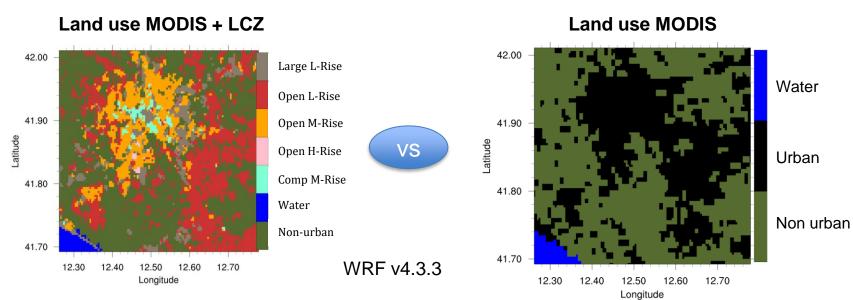



Esigenze

- Realisticità nella rappresentazione del tessuto urbano della città
- Versatilità del modello

Caratterizzazione delle aree urbane in WRF

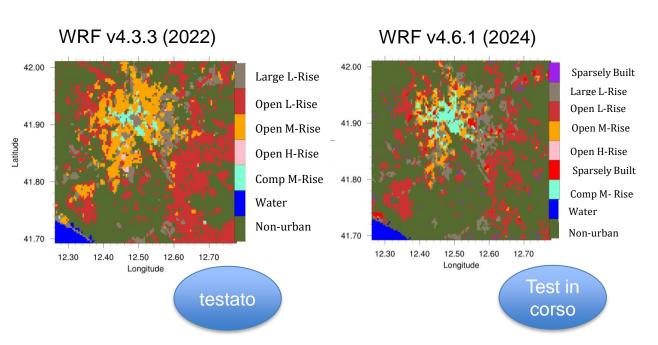
Le zone climatiche locali – LCZ (Stewart and Oke, 2012)



Fonte immagine LCZ: https://doi.org/10.3390/rs11232828

Implementazione in WRF delle LCZ

Esempio di Roma



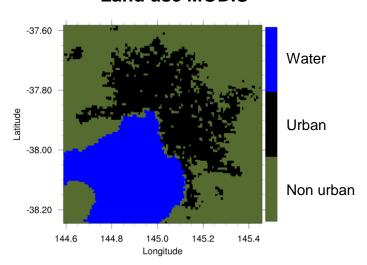
LCZ dataset (da https://www.wudapt.org/)
Tool w2w by Demuzere et al., //github.com/matthiasdemuzere/w2w

Rappresentazione realistica del tessuto urbano

Esempio di Roma

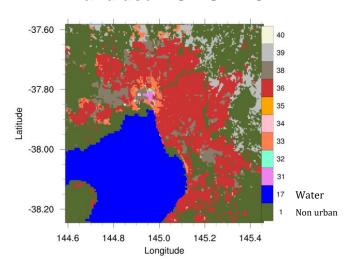
Caratteristiche del dataset di uso del suolo urbano

	WRF v4.3.3	WRF v4.6.1
celle urbane sul totale (%)	49%	34%
Numero di LCZ	5	7
LCZ prevalente	Open Low- Rise (55%)	Open Low- Rise (53%)



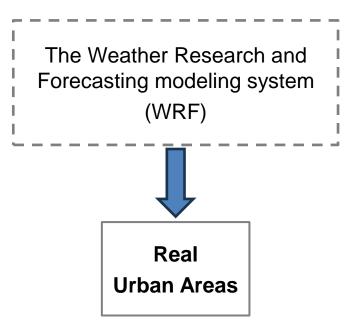
Rappresentazione realistica del tessuto urbano

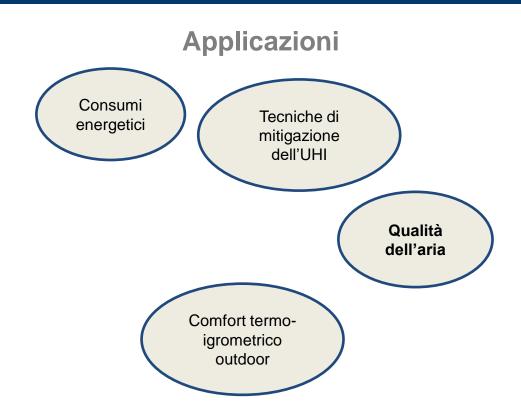
Esempio di Melbourne



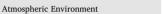
Land use MODIS

LCZ dataset (da https://www.wudapt.org/) Tool w2w by Demuzere et al., //github.com/matthiasdemuzere/w2w

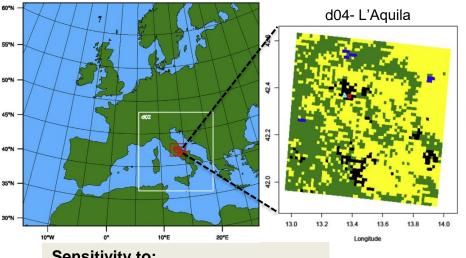

Land use MODIS + LCZ


WRF v4.3.3 (2022)

Simulazioni WRF realistiche


Risoluzione orizzontale = 1 km e meno Risoluzione temporale = 1 h

Contents lists available at ScienceDirect


journal homepage: www.elsevier.com/locate/atmosenv

High-resolution air quality modeling: Sensitivity tests to horizontal resolution and urban canopy with WRF-CHIMERE

Department of Physical and Chemical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
Center of Excellence in Telescraine of Environment and Model Prediction of Severe Events (CETEMPS), University of L'Aquila, L'Aquila, 67100, Italy

Risoluzione orizzontale

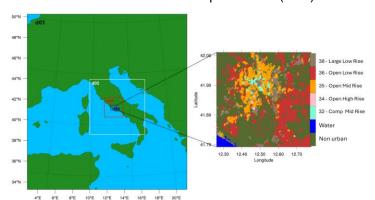
		dx = dy WRF (km)	dx = dy CHIMERE (°)
	d01 (EUR)	36	0.5
s	d02 (ITA)	12	0.12
	d03	4	0.04
	d04 (Urban Area)	1.3	0.015

Sensitivity to:

- Horizontal model grid size
- Resolution of the anthropogenic emissions inventory
- Urban schemes: Bulk, Single Layer Urban Canopy Model, Building Energy Parameterization (BEP)

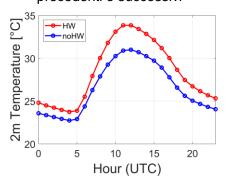
Applicazioni – Qualità dell'aria

Accoppiamento offline tra WRF e ADMS-Urban


PROGETTO PRIN 2022

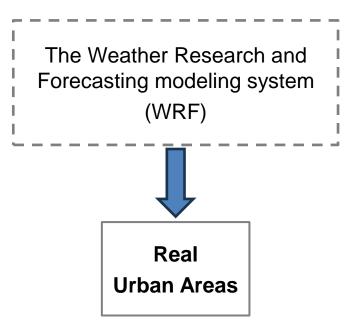
"uRban hEat and pollution iSlands in TerAction

"uRban hEat and pollution iSlands inTerAction in Rome and possible miTigation strategies – RESTART"


Aree geografiche coperte dai quattro domini WRF (a sn) e LCZ incluse nel dominio più interno (a dx)

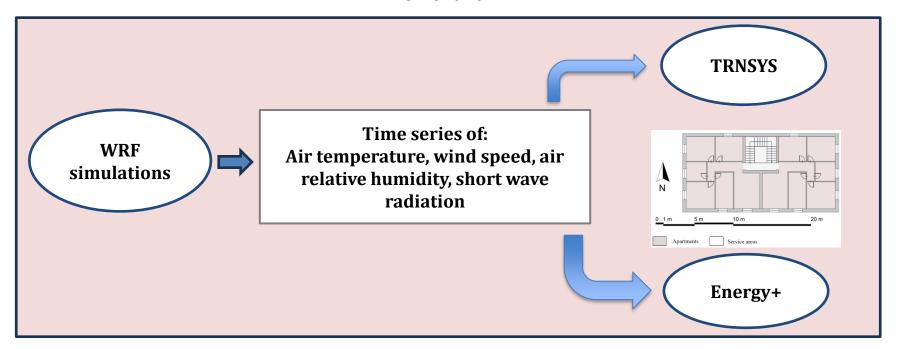
Risoluzione orizzontale dei domini di WRF

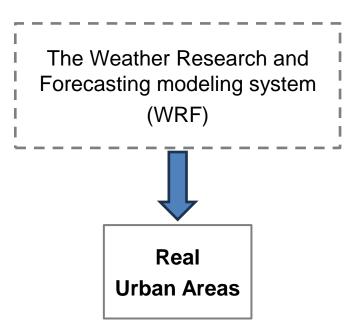
	dx = dy WRF (km)
d01	13.5
d02	4.5
d03	41.5
d04 (Rome)	0.5


Ciclo medio della temperatura nell'area urbana durante l'ondata di calore (HW) di luglio 2022 e nei giorni precedenti e successivi

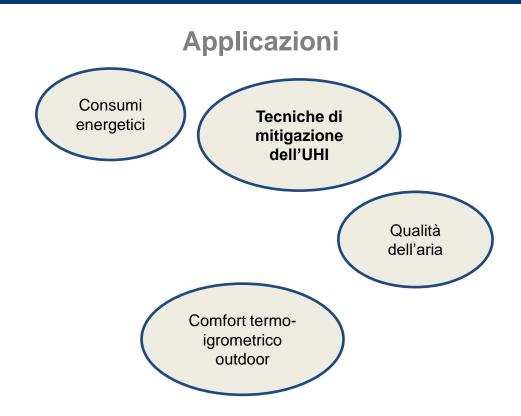


Simulazioni WRF realistiche


Risoluzione orizzontale = 1 km e meno Risoluzione temporale = 1 h


Applicazioni – Consumi energetici

Flowchart



Simulazioni WRF realistiche

Risoluzione orizzontale = 1 km e meno Risoluzione temporale = 1 h

Tecniche di mitigazione dell'UHI

Simulazione scenari «what-if» con WRF

- 1. Copertura delle superfici urbane con materiali ad alto albedo
- 2. Incremento del verde urbano
- Milano (senza LCZ)
- Melbourne (con LCZ)
- Roma (con LCZ)

Materiali ad alto albedo a Milano

Impatto su:

High albedo materials to counteract heat waves in cities: An assessment of meteorology, buildings energy needs and pedestrian thermal comfort

Serena Falasca^{a,b,*}, Virgilio Ciancio^c, Ferdinando Salata^c, Iacopo Golasi^c, Federica Rosso^d, Gabriele Curci^{b,c}

- a Department of Pure and Applied Sciences (DISPeA), University of Urbino, 61029, Urbino, Italy
- Center of Excellence in Telesenting of Environment and Model Prediction of Severe Events (CETEMIS), University of L'Aquila, 67100, L'Aquila, Buly Department of Astronactical, Electrical and Energy Engineering -Area Fisica Tecnica, University of Rom "Supterma", Vita Ensistanta 18, 001344, Roma, Italy Department of ACT (Contribution and Environmental Engineering (ORCA), University of Rom: "Supterma", Vita Endostosina 18, 001344, Roma, Italy
- Department of Physical and Chemical Sciences (DSFC), University of L'Aquila, 67100, L'Aquila, Italy
- ✓ Variabili meteo (temperatura dell'aria, velocità del vento)
- ✓ Condizioni di comfort termoigrometrico outdoor (indice biometeorologico empirico *Mediterranean Outdoor Comfort Index*)
- ✓ Consumi energetici per raffrescamento di un edificio mediante il tool Energy+

Materiali ad alto albedo e incremento di verde urbano a Melbourne

Impatto differenziato per densità edilizia su:

Contents lists available at ScienceDirect

Sustainable Cities and Society

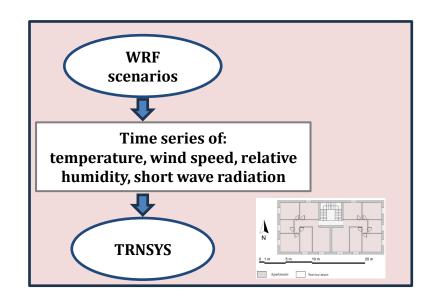
journal homepage: www.elsevier.com/locate/scs

On the mitigation potential of higher urban albedo in a temperate oceanic metropolis

Serena Falasca a,b,c,*, Michele Zinzi d, Lan Ding e, Gabriele Curci a,b, Mattheos Santamouris e

- ^a Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 Coppito, L'Aquila, Italy
- b Center of Excellence for the Remote Sensing and Forecast of Severe Weather (CETEMPS), Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 Coppito, L'Aquila, Italy
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Ita
- ^d ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy
 ^e Faculty of Built Environment, University of New South Wales, Sydney, NSW 2052, Australia
- rating by bala territorians, contrary by rear south rates, syangy, norr 2002, randa

- ✓ Variabili meteo (temperatura dell'aria, velocità del vento)
- ✓ Ventilation coefficient
- ✓ Consumi energetici per raffrescamento di un edificio mediante la variabile proxy Cooling Degree Hours (CDH)


Materiali ad alto albedo e incremento di verde urbano a Roma

Valutazione di tecniche di mitigazione dell'isola di calore e del clima urbano nella città di Roma attraverso analisi numeriche a meso-scala validate con misure a terra

Materiali ad alto albedo e incremento di verde urbano a Roma

Materiali ad alto albedo

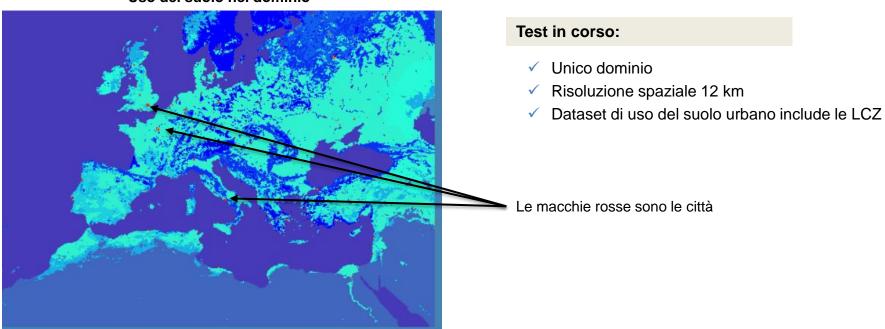
Valutazione di tecniche di mitigazione dell'isola di calore e del clima urbano nella città di Roma attraverso analisi numeriche a meso-scala validate con misure a terra

Study period

✓ July – August 2020

Numerical experiments:

- ✓ Reference case (CTRL)
- ✓ Scenari "what-if"


"What-if" scenarios

- ✓ TRE scenari con materiali ad alto albedo
- DUE scenari con incremento di verde urbano
- ✓ TRE scenari combinazione

Sviluppi

Valutazione dell'impatto dell'attivazione degli schemi urbani

Uso del suolo nel dominio

Sviluppi

Approfondimento dello studio sul verde urbano

Grazie per l'attenzione

serena.falasca@enea.it

Bibliografia essenziale

• Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879–1900. https://doi.org/10.1175/BAMS-D-11-00019.1

Extra slides

Grandezze analizzate

MOCI

$$MOCI = -4.257 + 0.146 * T_a + 0.325 * I_{CL} + 0.005 * RH + 0.001 * Rad - 0.235 * WS$$

Dove:

- T_a è la temperatura dell'aria [°C]
- I_{CL} è la resistenza termica degli indumenti MOCI = 1.608 0.038 * T_a
- RH è l'umidità relativa [%]
- Rad è la radiazione short wave [W/m²]
- WS è la velocità del vento [m/s]
- n è il numero di ore nell'intervallo di tempo considerato
- ✓ MOCI categories based on an ASHRAE 7-point scale [-3; -2; -1; 0; +1; +2; +3]:
 - -0.5 and 0.5 comfort conditions.
 - > 0.5 sensation of increasing heat
 - < -0.5 sensation of increasing cold.

Grandezze analizzate

Cooling Degree Hours

$$CDH = \sum_{h=1}^{n} (T_a - T_s)^+$$

Dove:

- T_a è la temperatura dell'aria [°C]
- T_s è la temperatura di set point (20°C-27°C secondo le indicazioni dell' ASHRAE) [°C]
- n è il numero di ore nell'intervallo di tempo considerato

Grandezze analizzate

Ventilation coefficient

VC = PBLH * WS

Dove:

- PBLH è l'altezza dello strato limite atmosferico [m]
- WS è la velocità media nel PBL [m/s]